Theory of differential offset continuation
نویسندگان
چکیده
منابع مشابه
Theory of differential offset continuation
I introduce a partial differential equation to describe the process of prestack reflection data transformation in the offset, midpoint, and time coordinates. The equation is proved theoretically to provide correct kinematics and amplitudes on the transformed constant-offset sections. Solving an initial-value problem with the proposed equation leads to integral and frequency-domain offset contin...
متن کاملTheory of differential offset continuation a
I introduce a partial differential equation to describe the process of prestack reflection data transformation in the offset, midpoint, and time coordinates. The equation is proved theoretically to provide correct kinematics and amplitudes on the transformed constant-offset sections. Solving an initial-value problem with the proposed equation leads to integral and frequency-domain offset contin...
متن کاملAmplitude preserving offset continuation in theory Part 1: The offset continuation equation
This paper concerns amplitude-preserving kinematically equivalent offset continuation (OC) operators. I introduce a revised partial differential OC equation as a tool to build OC operators that preserve offset-dependent reflectivity in prestack processing. The method of characteristics is applied to reveal the geometric laws of the OC process. With the help of geometric (kinematic) construction...
متن کاملOC - seislet : seislet transform construction with differential offset continuation a
Many of the geophysical data analysis problems, such as signal-noise separation and data regularization, are conveniently formulated in a transform domain, where the signal appears sparse. Classic transforms such as the Fourier transform or the digital wavelet transform, fail occasionally in processing complex seismic wavefields, because of the nonstationarity of seismic data in both time and s...
متن کاملSeismic reflection data interpolation with differential offset and shot continuation
I propose a finite-difference offset continuation filter for interpolating seismic reflection data. The filter is constructed from the offset continuation differential equation and is applied on frequency slices in the log-stretch frequency domain. Synthetic and real data tests demonstrate that the proposed method succeeds in structurally complex situations where more simplistic approaches fail.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: GEOPHYSICS
سال: 2003
ISSN: 0016-8033,1942-2156
DOI: 10.1190/1.1567242